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Abstract. The connectionform of a fibre bundlemaybeidentifiedwith thegauge
potential of a Yang-Mills theoryonly if its dependenceon the coordinatesof the
fibres can be eliminated. To maintain this property under a changeof bundle
coordinates,the standardfibre mustadmit a globally integrableparallelism. The
necessityof principal bundlesin thegeometricalformulationof Yang-Mills theories
can thenbededuced.

1. INTRODUCTION

The classicalaction for a pure Yang-Mills theory can be regardedas a func-
tional of the curvatureform of a principal fibre bundlethat is invariantunder

autornorphismsof the bundlewhich act trivially on the basespace[1) [2]. While
the set of gauge transformationsdeterminethe structuregroup of the bundle,
thereseemsto be no similar constrainton the standardfibre. The defining pro-
perty of a principal bundle, that the standardfibre coincidewith the structure
group [3], is one that could apparentlybe eliminated. However, attemptsto

generalizepure Yang-Mills theoriesby allowing the standardfibre to be a non-
group manifold have been unsatisfactory [41[5]. The aim of this paperis to

demonstratethat the geometryis strongly constrainedby physicalrequirements.
Of particular importanceis the condition that the fields and transformation
rulesare defined entirely on the basespace;otherwise,any gaugeinvarianceof
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the field theory cannotbe regardedas an internal symmetry. It will be shown

that the independenceof thegaugepotentialwith respectto the fibre coordinates

can be maintainedundergaugetransformationsonly if thestandardfibre is a Lie

group. One consequenceof this result is that the potentialmusttransformunder

the adjoint representationof the gauge group. A similar conclusion may be

reached by consideringthe consistencyof nonlinear self-couplingsof massless

spin-onefields [6].

2. THE CONNECTION FORM

A connection in a principal bundle (F, M, ir, G) (1) providesa decomposition

of the tangent spaceat p E P into a horizontal subspaceH,~,and a vertical sub-

spaceVt,, tangentto the fibres (7}. The horizontal subspaceH~dependssmoothly

on p, and it is requiredto be invariantunder right translationsRg*Hp = Hp~g•

The diffeomorphisni betweenthe fibre passingthroughp andthegroupG induces

an isomorphism betweenV~and the Lie algebraof G. Thus, givena connection,

a Lie-algebra-valuedconnection form can be defmed on P by projecting any
tangent vector in T~(P) to V~and then mappingthe vertical componentto the

Lie algebra.For each local section u : U C M -+ ir’(U), this connection form

can be pulled back to the basespaceby Ft°~= o*F. In local coordinatesfor the

neighbourhoodU, F~ A~’~dx~,whereA~0)can be identified as a Lie algebra-

valuedgauge potential, since,undera changeof section,a(x)-+ o’(x) = c(x)gl~x),

it transformsasA~”~= + g1 ~3~g[1].

Considernow a general fibre bundle (E, M, ir). Given a bundleatlas{U,~.,~1i~I,
every point x E M has a neighbourhood Un such that i,l/~is a diffeomorphism
from ir 1(U) to U x F for somestandardfibre F. If x E Un fl U~,y E F, then

o i~i~~(x,y) = (x, ~~
3(x, y)), where~ ) EDiff(F)are transitionfunctions.

The trivializations ~i, ~ determinetwo local sections Un(X) = ~.ç
1(x, y

0),

u~(x)= ~ ~, y0). If U C Un fl U~,an arbitrary trivialization ~i ir
1(U) —~ U xF

will map a(x), o~(x)to s~oa(x)= (x, y(x)), ~,1io~(x)= (x, y’(x)). Let us define

U x F -÷ F by ~jx, y) ~(x)~ ~1~(y) = y’, where E Diff(F).
Thenthetangentspacesto the two sectionsarerelatedby

(1) ~ ~ T~,!i~. ~ Ti4i~~(~~,U0))

Any bundle (E, M, ir) for which the total spaceE is a paracompactmanifold

admits a cr connection,0 ~ r ~ oo [8]. The tangentbundle is then thedirect sum

(1) P is the total space,M is the basespace,i~isa smoothprojection of P onto M, andG
is thestructuregroup.
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of the vertical and horizontal subbundles,TE = VEn HE. The horizontalpro-

jection of the tangentvectors00* ~ . ~ may be mappedontoTU x TF,

with the componentsalong TF denotedby C°,C~respectively.The horizontal

subspacesIP*HO(X), P*HO~(x)are spannedby vectorsof the form (~,C°(y)),

~ C~(y’)),as the componentsalong TF must independentof ~. Thus, the
diffeomorphism ~ induces a mapping from ~]I*HO(X) to ~Li$HQ(X), so that

(2) C~(y’)=TIJ1~ C°(y)

The connection forms F°, F’1 are obtained by subtractingC0, C’1 from v°,
V’1. The transformationfrom F0 to N is given by

= ~

(3) ~ V0(~~,y)—TlJ1~
0.C°(~~,y)

= Tl/1~’0(~~)+TI/1~0. F(~~,y)

The transformationrule of the connectionform for thebundle (E, M, ir) generally

involvesthe fibre coordinate.

3. INDEPENDENCE OF GAUGE TRANSFORMATION WITH RESPECTTO
THE FIBRE COORDINATE

To identify the connectionforms with gaugepotentialsdependingonly on the
coordinates of the base space M, one must extend ~ y) E T~(F)and
Fa(~~,y’) E T~(F)to globalvector fields on F. For anyy EF, definea mapping

from a vector space V to the tangent spaceT~(F),such that ~ y) =

=Ø~F
0(~~)whereF°(~~)EV.

PROPOSITION 1. The dependenceon the fibre coordinatein the transformation

rule for the connectionform can be eliminatedonly if thefibre F admits a

parallelism.

Proof It follows from (3) that

(4) ~ .Øf’°(~)

The relation betweenF°(~~)and canbe interpretedas a gaugetransfor-
mationif the fibre coordinatecan be eliminatedfrom (4). As both termson the
right-handside of (4) can be expressedas Ø

1,,X, X E V, 0), should be a vector

spaceisomorphismwhich dependssmoothlyony. Thus,~ : Vx F -~ TF, Ø(.,y) =

= Ø~,representsa parallelism on F, with V being the reducedtangent space

[9].
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Now considerthe secondterm on the right-handside of (4). To eliminatethe

fibre coordinate,we require

(5)

whereA(x) : V -+ V is a linear isomorphismdependingonly on the ~ andnot

the fibre coordinatey. Fora Yang-Mills theoryassociatedwith a principal bundle
(F, M, ir, G) V is the Lie algebraof G and A(x) = Ad(g

1(x)), g(x) E G. When

A(x) = Jd~,equation(5) becomesT~’ = çfr~, . çtç~.The parallelism~ definesa

differential system, whosesolution is a local diffeomorphismmapping y to y’.
The parallelism is defined to be integrableif a solution exists for any pair of

points y, y’ EF. Wheneverysolution can be extendedto a global diffeomorphism

on F, the parallelismis globally integrable,andFis aLie group[9].

Even if A(x) ~ Id~,,it can neverthelessbe demonstratedthat the parallelism

must be globally integrable.

PROPOSITION 2. For any pair of points ~ y~E F, there exists a global dif-

feomorphismiIi~ : F -÷ F, ~ (y
0) = y~,satisfyingTs,Li~0. = . A for some

constantmatrix A if andonly if theparallelism on F is globally integrable.

Proof The global diffeomorphism sIi~is strongly constrainedby (5). Indeed,
by Frobenius’ theorem, a local diffeomorphism obeying (5) will exist if and

only if

(6) [~~Aç’ . X, ~ Y]~ = c5~Aç
1.[X, Y]~

for any two vector fields X, V definedin a neighbourhoodof y
0. The parallelism

induces a set of smooth,linearly independentvectorfields {~(y)= ~~e1} where

the {e~} form a basisfor the vector spaceV. Expandingthe commutatorof two

vectors~, ~ at y in the basis {~(y)},[~, ~ = ciJk~.)~kU~),andnoting that

(7) ~~A~~1(y) = cb~Ae1=Akf~k(y’)

the integrability condition (6) becomes

(8) Ci.k(YO)Ak = Cklm(YO)AkiAlj

This identity holds for all points in a neighbourhoodof y0 when is a local

diffeomorphism. If we require ~ to be a global diffeomorphismobeying (5).

then (8) must be satisfiedat every point on the fibre. It will now be shownthat
no constantmatrix A can satisfy (8) when the coefficientsCilk dependon the

fibre coordinatej’. This is a consequenceof (8) leadingto an infinite numberof

independentconstraintson theconstantmatrix.

Supposethe contrary. Then for any pair of points (y, j~).there is a global

diffeornorphism(3 such that T(3 . = . B
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(9) Cf/k(~3~’Wmk= Cklm(Y)BkjBlI

If y is chosento be different from y’, cf/k(YY)* cf)k(y’), it may beassumedthat

B does not obey (8). Let us define the map 7 by ~i~(y) = i.ji~ . (3(y)
~Ji~(y) = 7(y’). Then Ty .4,,, = C, C = ABA’. From (8) and (9),

Cf/k (~~O)Amk= Cklm(I~I/~(YO))AkiAII

(10) = [ClflO(YO)(B~’)li(B~’)n/BkO}Amk

— r ~ ‘ ~‘C~ ‘C’~ C 1A A

— tCpqrkYoA ‘pk’~ ~‘ql mr~ kt’~l/
If [A, B] = 0, thenB = C and(10) becomes

(11) [c
1~0(y0)Ako ] (B—

1),
1(B ‘)n/Bmk = [c~~~(y’0)ApkAqlI~

1~ki~‘)ijCmr

which is equivalent to (8). Otherwise (10) representsan independentcondition
on A.

Let F be a smoothn-dimensionalmanifold, so that it may be coveredby open
patcheswhich are homeomorphicto open setsin R~.Since the tangentspaceat

any point on F is isomorphicto R”, the reducedtangentspace V can be identi-
fied with R~.If thereis a basisof V, (e

1, . . . e,~),in whichA is a diagonalmatrix
with n distinct eigenvalues,the matricescommuting with A are also diagonal.
If the eigenvaluesof A are not all different, then therewill be matriceswith off-

diagonalelementscommutingwith A. However, these matriceswill not neces-
sarily commutewith eachother,and, in fact, the maximal commutingsubgroup
in this set is again the group of diagonalmatrices.WhenA has complexeigen-

valuesand cannotbe diagonalizedoverRi’, the argumentabovecan be adapted
to show that the maximal abelian group of linear transformationsof V com-
muting with A is still n-dimensional.

However, not all matricesin this group can satisfy an identity such as (9).

This is demonstratedin thefollowing lemma.

LEMMA 1. Supposethere is a diffeomorphism (3(A) such that T(3(X) . 4, =

= AB,and

(12) Ci/k(Y)XBmk = Cklm(Y(A))XBkiXBJ/

Then A mustequal].

Proof It follows from (9) and (12) that Cklm(Y) = XCklm(Y(A)).The coefficients

Cklm are also constrainedby the following property.If X, Y, Z arethreeparallel
vector fields on F, so that their componentswith respectto the basis {~(y)}
are constant,then [X, Y], Z] is also a parallel vector field [FO].Thus for any
y,y’ EF
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‘I3~ FI~ ~ 1 l~1 — . ~.—1iii- 1 1 l~1‘. i ~ V’y t[cf~c/J~ckJ~

or equivalently,

(14) Ci/lCY’)Cklm(Y’)~~k(~Ci/mXY) = Cj/
1(y)C~J~(Y)—~k~fjrnXY)

In particular,forj~,5~(X)=(3(X)~3~(j~),(14)gives

(15) X
2Cif(5~)C~

1~(j~)— X~’~k(Ci/m)(5~)= ~i.l(y)Ckl — ~k~ijmXY)

There are two solutions to this equation,but by again considering(14) for the

pairy, ((3(X) . (3
1)~~~2(y),we see thatA = 1 is the only acceptableone.

From this lemma, it follows that the set of matricescommutingwith A and

satisfying (9), to be denotedas MA , hasmaximum dimensionn — 1. Now fix a

pointy
0 E F. If T13(y0,y) . 41 = 41 B~,then j —~ B~is amappingofF onto

MA . This mapping is surjective, but we will now show that its domain cannot

include all of F. Considertwo points )‘~= f3~.(j’),i = 1, 2, such that T$1 . 41 =

= Ø~,.. B.. When B1 = B2, T@2 . (3—i) =

4,Y2’ which implies Cf/k(y1) =

= ci/k(Y2). The diffeomorphism~2 (3~1is known as a translation,andthe set

of translationsforms a pseudogroup[9]. If the pseudogroupis transitiveon F,

then Cf/k is constantand the parallelismis integrable.By ouroriginal assumption,

however,the coefficientsCf/k arenot constantandthesetG
3, = y EF Cilk 0’) =

= Cf/k(Y1)} is strictly containedin F. It will now be shown that this assumption

cannothold.

LEMMA 2. ThesetC~containsall ofF.

Proof Supposeinitially that C~ is a continuouscurve passingthroughy1. Let

X~ be the tangent vector at y1 so that X(Cjj~)(y,)= Xk~k(Ci/m)(}~l) = 0. By
the identity (14), X(C~j~)(y’)= 0 for all y on the curve C~ . Thus C,, is aninte-

gral curveof the parallelvectorfield X.

The derivative of Cf/k in the direction of an arbitrary tangentvector V also

takes the same value at every point on C~ . Thus, if (4~}is the one-parameter

family of diffeomorphismsgeneratedby the vector field Y, the translationof

C3, by a distancet alongthe integral curvesof V gives a curveof constantCf/k,

C . The tangentvector to C,~ is
cbt(yi)

t2
(16) = X— t[X, Y] + — [X, Y], Y]

Associatedto each vector field V is a two-dimensionalsurfaceS~,spannedby

the integral curves of V passing through C~,. It can be shown that there will

exist different surfacesS,~,S,, that intersectat a non-zero distancefrom C,,



A CONSTRAINT ON THE GEOMETRY OF YANG-MILLS THEORIES 411

SupposeY
1, . . ., Y,~_1are independentvector fields such that the integral

curvesof linear combinationsof the V1 do not intersectandsweepout an n-di-
mensionalneighbourhoodof y1. If V = E a~Y1and V’ = aX + bY, the surfaces

S~,S~initially coincideat C,, . However,upon substitutingY’ in (16), onesees
that the tangent spacesto Si,, S,, will differ elsewhereas they are spannedby
linearly independentvectors. SinceS,, doesnot coincidewith S,, everywhere,
it must intersect anothersurfaceS~,,.Let y3 be a point in this intersection.

The set C,, consists of a curve in S~,with tangent vector X — t’[X, Y’~I+

[X, V’]. V’] — . . . and curve in ~ with tangentvectorX— t”[X, V ] +

+ — [X, V”], Y”] — . . . where t’ t” are parametersfor the integralcurvesof

V’, Y” respectively.Thesevectors are equal if they agreeto eachorder in the
infinitesimally small parameterst’, t”, which is only possibleif V” is a multiple

of Y’. Since V” * cY’, the tangentvectors do not coincide,andby linearity,
they generatea two-dimensional surfaceof constantCf/k. By translatingthis

surfaceback to y~,one now finds that C,, is two-dimensional.Upon repetition
of the aboveargumentsufficiently many times, it can be concludedthat CUk is
constanton an n-dimensionalneighbourhoodof y1, U,,. SinceF canbe covered

by overlappingneighbourhoodsU3,, Cf/k mustbe constanton all of F.

Since {~1(y)} are smooth vector fields, the coefficientsCjJk are smoothfunc-

tions and the only remainingpossibility is that C,, is a set of isolated points.
However, if C,, is zero-dimensionaland MA has maximum dimension n — 1,
there are infinitely many points in F which cannot be mappedonto MA. Cor-

respondingto eachof thesepoints is an independentconstrainton A. As A is a
constantmatrix, not all of theseconstraintscan be satisfied.Therefore,C,, is

n-dimensionaland containsall of F.

As a consequenceof Lemma2, it follows that the coefficientsCilk areconstant

and the parallelism on F must be globally integrable.The fibre F is thenof the
form GID, where G is a Lie groupandD is a discretesubgroup[10]. Assuming
F is simply connected,it will be a Lie group.

Conversely,when the parallelism is globally integrableand F is a Lie group,

the coefficients C/k are constant, and equation (8) will have solutions. The
simplestsolution is Amk = ‘~mk~More generally,one may note that the reduced
tangent space V can be identified with the Lie algebra,and given an arbitrary
groupelementg = exp(t~,),A = Ad(g)is an automorphismof V

(17) Ad(g)~~= exp(t~/)~fexp(— t~,)=

where
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(18) Amf = ~mf + t/Cf/m + t/tkCfklCl/m + .

Using the Jacobiidentity for the structureconstants,it can be verified to each

order in t that this expressionfor Amf representsthe most generalsolution to
(8). This completesthe proofof Proposition2.

On Lie groups,there are two types of parallelism, induced by left and right

multiplication.We will set = L,, ~. Since

Lg*Ly* =L~.,,.•Id
(19)

Rg*L3,* ~ ~Ad(g’)

both left and right translationsare diffeomorphismsof the fibre satisfying(5).

In fact, theseare the only such diffeomorphisms,becauseany mapp [Aing 41,
whosetangent is T41 = . Ad~g~). 41i, leaves the metric on the group
manifold G invariant. Thus 41 must be an isometry, and the isometry group

of G is G x G.

Let us now considerthe y-dependenceof the first term on the right-handside

of(4).

PROPOSITION 3. Let Ø~,be the parallelism on G induced by left multiplication.

ThenT41~’0(~~)= 413,(x),X(x) E V, only when = RS(X).

Proof For left translations,

(20) ~l/~
to(Y)=Lg(Y) =‘g(x) y =R,, ~g(x)= 41~’~(x)

defines41~.The tangentmappingis

T41i~
0(~~)=R,,~ . (g* . ~) ~ ~~~[R_~l(g* .

(21)
= ~ .

The dependenceof this term on the fibre coordinate is not eliminatedafter

multiplication by 41~iForright translations,Ii~0(x)= L,, g(x), so that

(22) T41~’(x)= L3,~(g*. ~) = Ø,,,[L~~g*.

Equation(4) now becomes

(23) F’1(~~)=Ad(g_i)F0(Ex)+ L~(g*.

which takes the standardform for a gauge transformationupon setting ~ equal

to ~. If the parallelism 41,, = R,, * is chosen,a similar result is obtainedwhen
41XL
p~ g(x)
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If G is abelian,the structureconstantsvanishandthematrix A is unconstrain-

ed. Consequently,the y-dependenceof T41~. 4,,,Fa(~~)doesnot directly lead
to a restriction on the diffeomorphism 41~.The precise form of ~ is

thereforeundetermined.However,onehas the following result.

PROPOSITION 4. If G is abelian, and = L,,~= R,,~,41~,= Lg(x) = Rg(x)~

Proof Definethefollowing mapsM -+ Diff(G) -* G by

(24)
Q . 41~(x)=

To obtain a y-independenttransformationrule, we require the tangentmap-

pingsto obey

(25) T41~Y~,(~~)= TO,, . T41~
0(~~)= Ø3,X(x)

wherey’ = 41~(y) andX(x) is anelementof theLie algebraof G. Theprojection

operatorO~can always be expressedas L,,ir(y) where ir(y) : Diff(G) -+ G is

definedby

(26) ~(y). 41~0(x)=L~
141~(y)

Equation(25) is then equivalentto

(27) &.‘41,,ir(y)*T41~(~~)= X(x)

From (7), we recall that

(28) T41~. ~.(y) = 41,,A4,,,~~(y)=Akf~~(y’)~A41,,Ø;~f(y)

which implies (T41~) 1A = 41~41~1,where the matrix A is independentof y by

definition. Since the group is abelian,414,_i = 4,,1 4, and

(29) ~ = X(x)

This conditionwill hold only if ~ris independentof y, whichimpliesthat 41~,(y)=

=y’g(x)=Rg(y).

4. CONCLUSION

For any Lie groupG, if the parallelism41~is inducedby left translations,the

only allowed coordinate transformationsare the right translationsRg(X). Con-
sequently,the structuregroup of the bundle (E, M, ir) is reducedto G. Onemay

also note from equation (2) that the distribution of horizontalsubspacesin TE

is invariant under right translations,Hpg = Rg*Hpi p E E. This property is
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requiredfor a connectionin a principal bundle, and the existenceof sucha con-

nectioncan be proven[3].
To summarize,the geometryof a pure Yang-Mills theory is describedby the

principal fibre bundle, with the connection form being identified as the gauge

potential. A general bundle (E, M, ir), where E is paracompact,also admits a

connectionand the transformationrule for the connectionform undera change

of bundle coordinatesis given by equation (3). This connectionform canonly

be regardedas a gauge potential if the dependenceof the transformationon the

fibre coordinates can be eliminated. By analyzing the y-dependenceof both

terms on the right-hand side of equation (3), oneobtains strong restrictionson

the standardfibre F, which is initially assumedto be an arbitrary smooth,simply-

connected,finite-dimensional manifold. In particular, the fibre F must admit a

globally integrableparallelism,which implies that it is a Lie group. Thestructure

group is similarly constrained.Even when F is a Lie group, the allowed bundle

transformationsconsist of either right or left multiplication but not both. Thus,

the structure group and the standardfibre coincide, and (E, M, ir) must be a

principal bundle.
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