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Abstract., The connection form of a fibre bundle may be identified with the gauge
potential of a Yang-Mills theory only if its dependence on the coordinates of the
fibres can be eliminated. To maintain this property under a change of bundle
coordinates, the standard fibre must admit a globally integrable parallelism. The
necessity of principal bundles in the geometrical formulation of Yang-Mills theories
can then be deduced.

1. INTRODUCTION

The classical action for a pure Yang-Mills theory can be regarded as a func-
tional of the curvature form of a principal fibre bundle that is invariant under
automorphisms of the bundle which act trivially on the base space [1] [2]. While
the set of gauge transformations determine the structure group of the bundle,
there seems to be no similar constraint on the standard fibre. The defining pro-
perty of a principal bundle, that the standard fibre coincide with the structure
group [3], is one that could apparently be eliminated. However, attempts to
generalize pure Yang-Mills theories by allowing the standard fibre to be a non-
group manifold have been unsatisfactory [4] [5]. The aim of this paper is to
demonstrate that the geometry is strongly constrained by physical requirements.
Of particular importance is the condition that the fields and transformation
rules are defined entirely on the base space; otherwise, any gauge invariance of
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the field theory cannot be regarded as an internal symmetry. It will be shown
that the independence of the gauge potential with respect to the fibre coordinates
can be maintained under gauge transformations only if the standard fibre is a Lie
group. One consequence of this result is that the potential must transform under
the adjoint representation of the gauge group. A similar conclusion may be
reached by considering the consistency of nonlinear self-couplings of massless
spin-one fields [6].

2. THE CONNECTION FORM

A connection in a principal bundle (P, M, 7, G) (1) provides a decomposition
of the tangent space at p € P into a horizontal subspace Hp and a vertical sub-
space Vp, tangent to the fibres [7]. The horizontal subspace Hp depends smoothly
on p, and it is required to be invariant under right translations Rg,Hp = Hp %
The diffeomorphism between the fibre passing through p and the group G induces
an isomorphism between Vp and the Lie algebra of G. Thus, given a connection,
a Lie-algebra-valued connection form can be defined on P by projecting any
tangent vector in Tp (P) to Vp and then mapping the vertical component to the
Lie algebra. For each local section ¢ : U € M — 7 1(U), this connection form
can be pulled back to the base space by '@ = ¢*T. In local coordinates for the
neighbourhood U, I'¥) = Al(l") dx*, where Aff) can be identified as a Lie algebra-
valued gauge potential, since, under a change of section, o(x)— ¢'(x) = a(x)g(x),
it transforms asAL"') = Ad(g_l)AL") +g7! 6yg [1].

Consider now a general fibre bundle (E, M, %). Given a bundle atlas {Ua,, wa},
every point x € M has a neighbourhood U_ such that V, is a diffeomorphism
from w"l(Ua) to U_ x F for some standard fibre £. If x € u,n Uﬁ,y € F, then
Y, o w;l(x, »)=(x, 9,0 1)), where ¢aﬂ(x, -) € Diff(F)are transition functions.

The trivializations ¢, d/ﬁ determine two local sections o_(x) = wgl(x, Vo)
0, x)= x}/;l(x, yO). IfUC U0 N Uﬁ, an arbitrary trivialization y : W)y~ UxF
will map oa(x), oﬁ(x) to Yo (x) = (x, y(x)), x//aﬁ(x) = (x, y'(x)). Let us define
Voo U X F=>F by ¥, (0, p) =¥ ()= g () = ¥, where Y7 € Diff(F).
Then the tangent spaces to the two sections are related by

(1) (&, VO =oxE) = (5, Ty, - (Yo, )x(E)) = (&, Ty &, 7))

Any bundle (¥, M, w) for which the total space E is a paracompact manifold
admits a C” connection, 0 <r <C oo [8]. The tangent bundle is then the direct sum

(1) P is the total space, M is the base space, 7 is a smooth projection of P onto M, and &
is the structure group.
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of the vertical and horizontal subbundles, TE = VE & HE. The horizontal pro-
jection of the tangent vectors 0, - &, Ogs - ¢, may be mapped onto TU x TF,
with the components along TF denoted by C%, C? respectively. The horizontal
subspaces Y, H_ () V.H, 55 are spanned by vectors of the form (¢, C*(y)),
(&, C8(y"), as “the components along TF must independent of & . Thus, the
diffeomorphism q,xa induces a mapping from ¢.H 05 (%) to y.H o3(x)" so that

(2) CAy) =Ty, - C2(»)

The connection forms I'*, T'® are obtained by subtracting C*, C? from V¢,
V#. The transformation from I'* to I'? is given by

Fa(sx’y,) = VB(Ex,y')—CB(Ex:,V’)
) =Ty EI+ Ty, - V&, »)— Ty, - C*&,, »)
=Tyl )+ Ty, T, ,»)

The transformation rule of the connection form for the bundle (£, M, 7) generally
involves the fibre coordinate.

3. INDEPENDENCE OF GAUGE TRANSFORMATION WITH RESPECT TO
THE FIBRE COORDINATE

To identify the connection forms with gauge potentials depending only on the
coordinates of the base space M, one must extend F“(Ex, y) € Ty (F) and
Fﬁ(Ex B X= Ty.(F) to global vector fields on F. For any y € F, define a mapping
¢y from a vector space V to the tangent space Ty(F), such that T'*(¢_, y) =
= ¢yF“(£x ) where ' (¢ ) E V.

PROPOSITION 1. The dependence on the fibre coordinate in the transformation
rule for the connection form can be elzmznated only if the fibre F admits a
parallelism.

Proof. It follows from (3) that

4) ¢, TP =TV} (£, + Ty}, - ¢, T(E)

The relation between F"‘(Ex) and FB(EX) can be interpreted as a gauge transfor-
mation if the fibre coordinate can be eliminated from (4). As both terms on the
right-hand side of (4) can be expressed as ¢y,X, X ev, ¢>y should be a vector
space isomorphism which depends smoothly on y. Thus, ¢ : Vx F > TF, ¢(-, y) =
= ¢y, represents a parallelism on F, with V being the reduced tangent space
[9]. n
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Now consider the second term on the right-hand side of (4). To eliminate the
fibre coordinate, we require

(5) TYE - ¢, =4, - A)
where A(x) : V — V is a linear isomorphism depending only on the d/;‘a and not
the fibre coordinate y. For a Yang-Milis theory associated with a principal bundie
(P, M, m, G) V is the Lie algebra of G and A(x) = Ad(g” I(x)), g(x) € G. When
Alx) = Id,,, equation (5) becomes T\L;‘a = ¢)’, . ¢;1. The parallelism ¢ defines a
differential system, whose solution is a local diffeomorphism mapping y to y'.
The parallelism is defined to be integrable if a solution exists for any pair of
points y, ' € F. When every solution can be extended to a global diffeomorphism
on F, the parallelism is globally integrable, and F is a Lie group [9].

Even if A(x) #+ Id Vo it can nevertheless be demonstrated that the parallelism
must be globally integrable.

PROPOSITION 2. For any pair of points Yoo y;) € F, there exists a global dif-
feomorphism \bg‘d F = F, d/;‘a (yy) = y('), satisfying T;l/;‘a -¢y =¢,.4 for some
constant matrix A if and only if the parallelism on F is globally integrable.

Proof. The global diffeomorphism \,l/ga is strongly constrained by (5). Indeed,
by Frobenius’ theorem, a local diffeomorphism obeying (5) will exist if and
only if

©) (6,405 1- X, 8,403 Y,y = 0,405 X Y1,

for any two vector fields X, Y defined in a neighbourhood of y,. The parallelism
induces a set of smooth, linearly independent vector fields {El.(y) = ¢yei} where
the {ei} form a basis for the vector space V. Expanding the commutator of two
vectors &, Ej at » in the basis {§(y)}, [&;, Ej]y = g (»)£, (), and noting that

(7 6, ADTLE() = 0, Ae; = Ak ()
the integrability condition (6) becomes
(8) ik (PIA py = Cklm(yé))AkiAlj

This identity holds for all points in a neighbourhood of 3, when d»;‘a is a local
diffeomorphism. If we require w;‘a to be a global diffeomorphism obeying (5).
then (8) must be satisfied at every point on the fibre. It will now be shown that
no constant matrix 4 can satisfy (8) when the coefficients Cijk depend on the
fibre coordinate y. This is a consequence of (8) leading to an infinite number of
independent constraints on the constant matrix.

Suppose the contrary. Then for any pair of points (y. 7). there is a global
diffeomorphism @ such that 7 - ¢y = ¢y~ -B
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©) ik VB = Chim'Y )BkiBIj

If y is chosen to be different from y", Cijk )+ c,.].k(y'), it may be assumed that

B does not obey (8). Let us define the map vy by w;‘a(fz) = d/;‘a B =
Y () = ¥(). Then Ty - ¢, = ¢y x () - C C = ABA™!. From (8) and (9),

Ciik Fo)A i = Cam(Vpa TN A4y
(10) = [Clno(yO)(B—l)li(B_l)njBko]Amk
= [cpqr(y())(c—l)pk (C—l)qlcmr]AkiAIi
If [4, B] =0, then B = C and (10) becomes

an [clno(yO)A ko](B_ 1)Ii(B_l)nijk = [Cpqr(y;))ApkAqI.](C- l)ki(C_ 1)I/'Cmr

which is equivalent to (8). Otherwise (10) represents an independent condition
onA.

Let F be a smooth n-dimensional manifold, so that it may be covered by open
patches which are homeomorphic to open sets in R”. Since the tangent space at
any point on F is isomorphic to R”", the reduced tangent space V can be identi-
fied with R". If there is a basis of V, (el, S8, ), in which A is a diagonal matrix
with »n distinct eigenvalues, the matrices commuting with A are also diagonal.
If the eigenvalues of 4 are not all different, then there will be matrices with off-
diagonal elements commuting with 4. However, these matrices will not neces-
sarily commute with each other, and, in fact, the maximal commuting subgroup
in this set is again the group of diagonal matrices. When 4 has complex eigen-
values and cannot be diagonalized over R”, the argument above can be adapted
to show that the maximal abelian group of linear transformations of V com-
muting with A is still n-dimensional.

However, not all matrices in this group can satisfy an identity such as (9).
This is demonstrated in the following lemma.

LEMMA 1. Suppose there is a diffeomorphism B(N) such that TB(\) - ¢y =

= ¢y(7\) - AB, and

(12) Cigk OMB . = Cipm (PO NBY ABy,

Then \ must equal 1.

Proof. 1t follows from (9) and (12) that cklm(y) = )xcklm()?()\)). The coefficients
Cypm are also constrained by the following property. If X, Y, Z are three parallel
vector fields on F, so that their components with respect to the basis {Ei(y)}
are constant, then [[X, Y], Z] is also a parallel vector field [10]. Thus for any
»y' €F
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(13) Ug, &1 &1, =0, -0, 1E, £ &1,

or equivalently,

(14) it m (P — E ()Y = ¢y (0)eg 1, 0D — & (€35 XY)

In particular, for 7, F(X) = (\) - ~1(F), (14) gives

(15) N2 (D)) — N (0 )P) = €)1, (P) — £ (03, )(3)

There are two solutions to this equation, but by again considering (14) for the
pair y, B(A) - B~1)~2(y), we see that X\ = 1 is the only acceptable one.

From this lemma, it follows that the set of matrices commuting with 4 and
satisfying (9), to be denoted as M, , has maximum dimension n — 1. Now fix a
point yo € F. If TB(y, ») - d) = ¢y B, then y — B is a mapping of F onto
M, . This mapping is SUI’]CCUVG but we w1ll now show that its domain cannot
mclude all of F. Consider two points y; = B,{y), I = 1, 2, such that 78, - ¢
= d) B When B, = Bz’ T(ﬁ2 -g7h . ¢y1 = ¢y2 which implies C"k(J l) =
= Uk(y2) The dlffeomorphlsm B, - Bl is known as a translation, and the set
of translations forms a pseudogroup [9]. If the pseudogroup is transitive on F,
then ¢; is constant and the parallelism is integrable. By our original assumption,
however, the coefficients ¢;;x a1e not constant and the set Cy1 =y EF]| Ciik (y)=
= ci].k(yl)} is strictly contained in F. It will now be shown that this assumption
cannot hold. ~

LEMMA 2. The set Cy1 contains all of F.

Proof. Suppose initially that C is a continuous curve passing through y,. Let
Xy be the tangent vector at yl so that X(cl ) =X ‘;’k(c”m)(yl) = 0. By
the identity (14), X(c 1 )(¥) =0 for all y on the curve Cy1 Thus Cy1 is an inte-
gral curve of the parallel vector field X.

The derivative of Cijik in the direction of an arbitrary tangent vector Y also
takes the same value at every point on Cyl' Thus, if, {(At} is the one-parameter
family of diffeomorphisms generated by the vector field Y, the translation of
Cy1 by a distance ¢ along the integral curves of Y gives a curve of constant Ciko

C The tangent vector to C

&) o) B®

2«2
(16) GpeX =X —1lX, Y]+ — [, YL V)~ ...

Associated to each vector field Y is a two-dimensional surface SY spanned by
the integral curves of Y passing through Cyl' It can be shown that there will
exist different surfaces SY,, Sy« that intersect at a non-zero distance from Cy1
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Suppose Y,, . . ., Y,_, are independent vector fields such that the integral
curves of linear combinations of the Y, do not intersect and sweep out an n-di-
mensional neighbourhood of y,. If ¥ = Z 4,Y; and Y' = aX + bY, the surfaces

Sy, Sy initially coincide at Cy1 ; Howevelr, upon substituting Y’ in (16), one sees
that the tangent spaces to Sy, S, will differ elsewhere as they are spanned by
linearly independent vectors. Since Sy, does not coincide with S, everywhere,
it must intersect another surface SY". Let ¥4 be a point in this intersection.

The set C, consists of a curve in Sy . with tangent vector X — rlX, Y'l+
[2 "
+-E [[X, Y'). Y'] — ... and curve in S, with tangent vector X —¢"[X, Y ] +

na
+— (X, Y"], Y"] — ... where t' t" are parameters for the integral curves of

Y’, Y" respectively. These vectors are equal if they agree to each order in the
infinitesimally small parameters ', ¢, which is only possible if Y" is a multiple
of Y'. Since Y" s ¢Y’, the tangent vectors do not coincide, and by linearity,
they generate a two-dimensional surface of constant Cijk- By translating this
surface back to y,, one now finds that Cy1 is two-dimensional. Upon repetition
of the above argument sufficiently many times, it can be concluded that Ciik is
constant on an n-dimensional neighbourhood of y,, U . Since F can be covered
by overlapping neighbourhoods Uy » Cijk must be constant on all of F.

Since {£,(»)} are smooth vector fields, the coefficients Cx are smooth func-
tions and the only remaining possibility is that C is a set of isolated points.
However, if C is zero-dimensional and M, has max1mum dimension n — 1,
there are mﬁmtely many points in F Wthh cannot be mapped onto M, Cor-
responding to each of these points is an independent constraint on A. As Aisa
constant matrix, not all of these constraints can be satisfied. Therefore, Cy1 is
n-dimensional and contains all of F. =

As a consequence of Lemma 2, it follows that the coefficients Cijx are constant
and the parallelism on F must be globally integrable. The fibre F is then of the
form G/D, where G is a Lie group and D is a discrete subgroup [10]. Assuming
F is simply connected, it will be a Lie group.

Conversely, when the parallelism is globally integrable and F is a Lie group,
the coefficients Cijx are constant, and equation (8) will have solutions. The
simplest solutionis 4, = Smk. More generally, one may note that the reduced
tangent space IV can be identified with the Lie algebra, and given an arbitrary
group element g = exp(tiéj), A = Ad(g) is an automorphism of V

(17) Ad@; = exp(1£); exp(— 1) = £, 4

m* " mi

where
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1
(18) A =6 .+t + ...

mi mi iCijm + ; tjtk Ciki€lim
Using the Jacobi identity for the structure constants, it can be verified to each
order in ¢ that this expression for A,.; tepresents the most general solution to
(8). This completes the proof of Proposition 2. =

On Lie groups, there are two types of parallelism, induced by left and right
multiplication. We will set ¢y = Ly «- Since
L * « = «
19 ¢ Ly Lg_y Id .
Rg*Lyl: = Ly. g* Ad(g )
both left and right translations are diffeomorphisms of the fibre satisfying (5).
In fact, these are the only such diffeomorphisms, because any mapp [Aing ¢,
whose tangent is Ty = ¢w(y) - Ad@g™Y) - ¢;1, leaves the metric on the group
manifold G invariant. Thus ¢ must be an isometry, and the isometry group
of GisG x G,
Let us now consider the y-dependence of the first term on the right-hand side
of (4).

PROPOSITION 3. Let d)y be the parallelism on G induced by left multiplication.

Then Tx//g’a(‘;’x) = qﬁy,(x), X(x)€E V, only when l[/ga = Rg(x).

Proof. For left translations,
(20) V3,0 =L, () =glx) y =R, -gx)= Y3, (x)
defines \bg’a. The tangent mapping is
- . . = -1 .
TV (5,)=R,. - @* £) =R .R.[RZMg* - £)]
= ¢, 4d(y"DIR;NE* - £,)]

The dependence of this term on the fibre coordinate is not eliminated after
multiplication by ¢;,1 . For right translations, ¥, (x) = L - g(x), so that

(21)

(22) Ty (x) = L,.@g* &)= ¢yr[L;}(g* “E)]
Equation (4) now becomes
(23) PA(E) = Ad@@ T () + L e* - £)

which takes the standard form for a gauge transformation upon setting £ equal
to a“. If the parallelism ¢y = Ry* is chosen, a similar result is obtained when

:L ]

X
Bo g(x)-
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If G is abelian, the structure constants vanish and the matrix A is unconstrain-
ed. Consequently, the y-dependence of Td/;‘a . ¢yF°’(fx) does not directly lead
to a restriction on the diffeomorphism l[/';a. The precise form of Txpga(zx) is
therefore undetermined. However, one has the following result.

PROPOSITION 4. If G is abelian, and ¢, = L, = Ru, ¥Z, = Loy = Ry,

Proof. Define the following maps M — Diff(G) - G by
Yo, )= V50
0, - Vg, () =¥} (x)

To obtain a y-independent transformation rule, we require the tangent map-
pings to obey

(25) TY2(5,) = TO, - Ty, (£) = 6, X (x)

where y' = x}/;‘a (¥) and X(x) is an element of the Lie algebra of G. The projection

(24)

operator Oy can always be expressed as Ly1r(y) where #(y) : Diff(G) - G is
defined by

(26) 7)Y ) = L1 Y5 ()

Equation (25) is then equivalent to

@7 ¢ 0, m(1)xTY,,(5,) = X(x)

From (7), we recall that

28) TV, E() =0, 48] 15(0) = A, 5 (V)= 46,651 £,()

which implies (T\[/;‘a)_lA = ¢y¢;,1 , where the matrix A is independent of y by
definition. Since the group is abelian, ¢y ¢;,1 = ¢;,1 ¢y and

(29) (TY5 ) TAT()RTY, (5 = X (x)
This condition will hold only if 7 is independent of y, which implies that w;‘a )=
=y 8x) =R, (y) =

4. CONCLUSION

For any Lie group G, if the parallelism ¢y is induced by left translations, the
only allowed coordinate transformations are the right translations Rg(x). Con-
sequently, the structure group of the bundie (E, M, 7) is reduced to G. One may
also note from equation (2) that the distribution of horizontal subspaces in TF

is invariant under right translations, Hp g = Rg,.Hp, p € E. This property is
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required for a connection in a principal bundle, and the existence of such a con-
nection can be proven [3].

To summarize, the geometry of a pure Yang-Mills theory is described by the
principal fibre bundle, with the connection form being identified as the gauge
potential. A general bundle (£, M, w), where E is paracompact, also admits a
connection and the transformation rule for the connection form under a change
of bundle coordinates is given by equation (3). This connection form can only
be regarded as a gauge potential if the dependence of the transformation on the
fibre coordinates can be eliminated. By analyzing the y-dependence of both
terms on the right-hand side of equation (3), one obtains strong restrictions on
the standard fibre F, which is initially assumed to be an arbitrary smooth, simply-
connected, finite-dimensional manifold. In particular, the fibre F must admit a
globally integrable parallelism, which implies that it is a Lie group. The structure
group is similarly constrained. Even when F'is a Lie group, the allowed bundle
transformations consist of either right or left multiplication but not both. Thus,
the structure group and the standard fibre coincide, and (£, M, 7) must be a
principal bundle.
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